Optimal single-copy measurement for the hidden-subgroup problem
نویسندگان
چکیده
منابع مشابه
Optimal measurements for the dihedral hidden subgroup problem
We consider the dihedral hidden subgroup problem as the problem of distinguishing hidden subgroup states. We show that the optimal measurement for solving this problem is the so-called pretty good measurement. We then prove that the success probability of this measurement exhibits a sharp threshold as a function of the density ν = k/ log2N , where k is the number of copies of the hidden subgrou...
متن کاملFrom optimal measurement to efficient quantum algorithms for the hidden subgroup problem over semidirect product groups
We approach the hidden subgroup problem by performing the so-called pretty good measurement on hidden subgroup states. For various groups that can be expressed as the semidirect product of an abelian group and a cyclic group, we show that the pretty good measurement is optimal and that its probability of success and unitary implementation are closely related to an average-case algebraic problem...
متن کاملGeneral Bounds for Hidden Subgroup Problem
The central issue of the hidden subgroup problem (HSP) is to bound the number of identical copies of coset states necessary to identify the hidden subgroup. We show general upper and lower bounds for this identification and its variant by information-theoretic arguments. These general bounds are tight for HSPs with all the candidate subgroups having the same prime order. In particular, our resu...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولQuantum measurements for hidden subgroup problems with optimal sample complexity
One of the central issues in the hidden subgroup problem is to bound the sample complexity, i.e., the number of identical samples of coset states sufficient and necessary to solve the problem. In this paper, we present general bounds for the sample complexity of the identification and decision versions of the hidden subgroup problem. As a consequence of the bounds, we show that the sample compl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2008
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.77.032335